
seqOutBias v1.4.0 User Guide
2023/02/21

Contents
Introduction ... 1

Requirements ... 1

Setup .. 2

Compilation .. 2

Installation .. 2

Quick Start .. 3

Overview .. 3

kmer-size definition .. 4

Subcommands .. 6

tallymer .. 6

seqtable .. 7

dump .. 8

table ... 9

scale .. 10

Introduction
Molecular biology enzymes have nucleic acid preferences for their substrates; the preference of an
enzyme is typically dictated by the sequence at or near the active site of the enzyme. This bias may result
in spurious read count patterns when used to interpret high-resolution molecular genomics data. The
seqOutBias (https://github.com/guertinlab/seqOutBias) program aims to correct this issue by scaling the
aligned read counts by the ratio of genome-wide observed read counts to the expected sequence based
counts for each k-mer. The sequence based k-mer counts take into account mappability at a given read
length using Genome Tools' Tallymer program. The seqOutBias program allows for flexibility in specifying
the k-mer, including varying the k-mer size, k-mer information spacing, and specifying strand-specific
offsets for the start of the sequence reads. Due to the large size of some datasets, seqOutBias reads
compressed files (FASTA, mappability information, and BAM files), and reuses intermediate results as
much as possible.

Requirements
• Platform: OS X or Linux
• Compiler: rust >= 1.32.0 + cargo (http://www.rust-lang.org)
• Genome tools (http://genometools.org)
• wigToBigWig (http://genome.ucsc.edu/admin/git.html or

 http://hgdownload.cse.ucsc.edu/admin/exe/)

seqOutBias v1.4.0 User Guide
2023/02/21

seqOutBias is written in Rust, so it requires Rust and Cargo to compile it (www.rust-lang.org). seqOutBias
is known to run on OS X and Linux. It may be possible to compile it on other platforms as long as supporting
Rust libraries can be made to compile, specifically https://crates.io/crates/flate2 and
https://crates.io/crates/rust-htslib are likely to be the dependencies that are most troublesome to
compile.

At runtime, the step that computes mappability requires Genome Tools' Tallymer program to be in the
PATH. It is possible to replicate the steps taken by seqOutBias to compute the mappability file
independently, or run that part in a different machine, and supply the resulting file to seqOutBias (see the
tallymer sub-command for more details).

The step that generates a bigWig file requires the UCSC executable wigToBigWig in the PATH.

Setup
Compilation
To install Rust and Cargo visit www.rust-lang.org, seqOutBias should compile with Rust 1.32.0 or later.
Alternatively, on OS X, if you have Homebrew (http://brew.sh/) installed and up to date, you can use
brew to install rust as so:

Afterwards, uncompress the source and build:

Installation
After compilation, copy the seqOutBias binary (seqOutBias_1.4.0/target/release/
seqOutBias) to a folder in your PATH, for example /usr/local/bin.

You'll also need to install genome tools (http://genometools.org). Again, on OS X, if you have Homebrew
(http://brew.sh) installed you can install genome tools as so:

You will need to build the wigToBigWig utility from the UCSC Genome Browser source code (
http://genome.ucsc.edu/admin/git.html) and move the binary into your PATH, following the instructions
included with the Genome Browser source code. This command is required to obtain bigWig files after
scaling. Alternatively, you can download the platform-specific binary from UCSC
(http://hgdownload.cse.ucsc.edu/admin/exe/).

brew install rust

tar xzf guertinlab-seqOutBias-v1.4.0.tar.gz

cd guertinlab-seqOutBias-v1.4.0

cargo build --release

brew install homebrew/science/genometools

seqOutBias v1.4.0 User Guide
2023/02/21

Quick Start
With genometools, wigToBigWig and seqOutBias installed and in the PATH, we can start processing files
by simply invoking the command as:

where ref.fa and reads.bam are, respectively, the reference sequence FASTA file and the sorted
aligned reads BAM file1. This will run through the process of computing the mappability information,
parsing the reference sequence to compute k-mer indexes, tallying the k-mer counts in both the sequence
and the aligned reads, and finally producing the scaled BED and bigWig read pile-ups. Each intermediate
step corresponds to a seqOutBias subcommand, allowing them to be run individually and even on
different machines (see the next sections for more details).

When ran with no arguments, this will assume default values for read length (36), k-mer size (4) and the
cut-site position (middle of the k-mer, i.e., plus and minus offset = 2). Run seqOutBias -h to see the
full set of options and subcommands.

Overview

The figure above gives a high-level overview of the inputs (left side “documents”), intermediate files (mid-
flow “documents”) and output (bottom) of the seqOutBias program. Furthermore, it illustrates the various
computation steps that the program performs:

1 It’s possible to supply more than one BAM file, for example, to combine the data from multiple replicates.

Tallymer

SeqTable

Tabulate

Scale

Table

Dump

FASTA

BAM

BED BIGWIG

TBL

gtTxt

seqOutBias ref.fa reads.bam

seqOutBias v1.4.0 User Guide
2023/02/21

• Tallymer – Indexes the reference sequence (FASTA) and computes mappability for the given read
length;

• SeqTable – Parses the reference sequence (FASTA) together with the mappability information to
compute the k-mer that corresponds to each possible read alignment position; the resulting
binary file stores this information in a compressed form that’s easy to use for subsequent
computation steps, as well as storing the corresponding parameters (read length, k-mer size, and
cut-site offsets);

• Tabulate – Tallies the k-mer counts across the selected regions (or full genome), as well as the k-
mers corresponding to observed aligned reads (if a BAM file is supplied);

• Scale – Compute the genome-wide aligned read pile-ups, scaling them by the expected/observed
cut frequency;

When executed as described in the “Quick Start” section, all the main computation steps (marked in
green) are executed, however, different subcommands can be used to run specific computation steps (see
“Subcommands” section), or obtain text versions of the intermediate states (“dump” to display the
SeqTable output, “Table” to obtain the normalization table data).

kmer-size definition

In seqOutBias, the sequence recognized by the enzyme to confer specificity, the k-mer, is characterized
by four parameters (illustrated above): kmer-size, read size, and a pair of offsets for the plus and minus
strands. This enables the use of seqOutBias with enzymes that have distinct recognition site lengths.

Note: Only non-negative value offsets are permitted.

Spaced k-mers
For situations where some bases surrounding the first sequenced base do not contribute to site
recognition, it is possible to specify a kmer-mask, using the “--kmer-mask” parameter. Positions that
should be ignored are represented by an ‘X’ and regular positions by an ‘N’. For example, a possible 8-
mer that spans 16 bp could be represented as NNXXNNXXXXNNXXNN.

This parameter also provides an alternative way to specify the position intervening between the base
directly upstream the first base sequenced and the first base sequence by inserting a ‘C’ in the mask
string. For example, “NNCNN”, would represent a recognition site with size equal to four, plus-offset = 2
and minus-offset = 2.

ACGGGATATGATGACCAGATGACA
TGCCCTATACTACTGGTCTACTGT

kmer-size ACGGGATATGATGACCAGATGACA
TGCCCTATACTACTGGTCTACTGT

GACCAG…

…TATACT

plus offset = 2

minus offset = 3

seqOutBias v1.4.0 User Guide
2023/02/21

Note: When the kmer-mask is present, it takes precedence over the “--kmer-size“ parameter. If a ‘C’ is
used to indicate the cut-site position, it takes precedence over the offset parameters.

Strand-specific kmers
For situations where both strands should be treated independently with respect to the kmer sequence
and the kmer should be mirrored, then use the “--strand-specific” flag.

For example, assuming the following parameters: “--strand-specific --kmer-mask=NNXN --plus-offset=5 --
minus-offset=5 --read-size=6”, then the following illustrate the expected indexing behaviour:

Plus strand read example with recognition site in yellow: indexed as ACG

 *
AACACTGCNAACAGCAGTTTT
TTGTGACGNTTGTCGTCAAAA

Minus strand read example with recognition site in yellow: indexed as ACG

AACACTGCNAACAGCAGTTTT
TTGTGACGNTTGTCGTCAAAA
 *

Note: When the strand-specific flag is present, the plus-offset and minus-offset must be identical.

Option profiles
For situations where there is a need for repeated use of the same set of parameters, it is possible to
create a file with these values and pass them using the “--profile=<file>“ parameter. For example, a
file name “myprofile” could an often used read and kmer size setting:

read-size = 64
kmer-size = 8

 and these would be invoked by passing “—profile=myprofile” when invoking the program.

Note: Options passed in the profile take precedence over command line options. Additionally, if
recognized, will be listed in the output:

Profile file: myprofile
Loading flag 'kmer-size' from profile file.
Loading flag 'read-size' from profile file.

seqOutBias v1.4.0 User Guide
2023/02/21

Subcommands
tallymer

seqOutBias tallymer <fasta-file> <read-size> [--parts=<n>]

This subcommand creates the mappability file for a given read length. This process consists of three parts:
1) creating a suffix tree; 2) creating a genome index; 3) creating the mappability file.

It corresponds to running the following genome tools’ commands (replacing the bolded parts with the
seqOutBias arguments):

Intermediate files are created in the current working directory. Furthermore, seqOutBias will recognize
the existence of intermediate files and avoid recomputing those portions. So, if seqOutBias tallymer is
executed for different read sizes, but keeping the same FASTA file, then the first suffix-tree portion is re-
used across invocations.

If the input FASTA file is compressed, then so will be the output file.

Tallymer

SeqTable

Tabulate

Scale

Table

Dump

FASTA

BAM

BED BIGWIG

TBL

gtTxt

gt suffixerator -dna -pl -tis -suf -lcp -v -parts <n> -db <fasta-file>
-indexname <fasta-file>.sft

gt tallymer mkindex -mersize <read-size> -minocc 2 -indexname <fasta-
file>.tal_<read-size> -counts -pl -esa <fasta-file>.sft

gt "tallymer search -output qseqnum qpos -strand fp -tyr <fasta-
file>.tal_<read-size> -q <fasta-file> > <fasta-file>.tal_<read-
size>.gtTxt

seqOutBias v1.4.0 User Guide
2023/02/21

seqtable

seqOutBias seqtable <fasta-file> [options]

--kmer-size=<n> kmer size [default: 4].

--tallymer=<file> Unmappable positions file produced by tallymer (seq, pos).

--gt-workdir=<path> Working directory for Genome Tools.

--plus-offset=<p> Offset on plus strand [default: 2]. Eg, p=2 AA[A]A.

--minus-offset=<m> Offset on minus strand [default: 2]. Eg, m=2 A[A]AA.

--kmer-mask=<str> String indicating relevant kmer positions, eg.
NNXXNNCXXXXNNXXNN.

--read-size=<r> Read length [default: 36].

--parts=<n> Split suffix tree generation into n parts [default: 4].

--out=<outfile> Output seqtable filename (defaults to fasta file basename with .tbl
extension).

This subcommand creates an intermediate table that combines mappability, read length, and offsets to
map k-mer indexes to the aligned read positions. This intermediate file reduces the amount of
computation needed when processing aligned read files and provides an intermediate file that decouples
the reference sequence processing from the remaining steps.

Note: If no tallymer output file is supplied (via the --tallymer=<file> option), then it will invoke the
tallymer subcommand.

Tallymer

SeqTable

Tabulate

Scale

Table

Dump

FASTA

BAM

BED BIGWIG

TBL

gtTxt

seqOutBias v1.4.0 User Guide
2023/02/21

Note: When the k-mer mask is present, it takes precedence over the “--kmer-size“ parameter. If a ‘C’ is
used in the “--kmer-mask” parameter to indicate the position relative to the first base sequenced, it takes
precedence over the offset parameters.

dump

seqOutBias dump <seqtbl-file> [<seqrange>]

This subcommand enables the inspection the seqtable file (or parts of it) by outputting the file contents
in plain text. It takes an optional sequence range in the form of “chrom:start-end” that restricts the
output to that region. The output is preceded by a list of the input parameters (read-size, kmer-size, etc.)
that were used to build the sequence table file.

Tallymer

SeqTable

Tabulate

Scale

Table

Dump

FASTA

BAM

BED BIGWIG

TBL

gtTxt

seqOutBias v1.4.0 User Guide
2023/02/21

table

seqOutBias table <seqtbl-file> [<bam-file>...] [--qual=<q>] [--
regions=<bedfile>] [--pdist=<min:max>] [--only-paired]

This subcommand produces an k-mer count table based on the sequence information (via the seqtbl file)
and the optional BAM files. If more than one file is given, then the counts are pooled across files. K-mers
are indexed by their plus strand sequence (for example, AAAA = 1, AAAC = 2, AAAG = 3, etc), but counts
are reported independently for each strand. It’s done this way because mappability can differ between
strands. By default counts correspond to the entire genome, but can be constrained to specific regions by
supplying a BED file with the “--regions” option.

When no BAM file is supplied, the output will have four columns: k-mer index, k-mer string, plus strand
count, and minus strand count. If a BAM file is supplied, the output will have two additional columns with
the plus and minus strand counts of observed aligned reads. For example:

1 AAAA 40584084 39080470
2 AAAC 14531729 14684467
3 AAAG 19041196 19266837
4 AAAT 26793796 27032258
5 AACA 15881340 16097718
6 AACC 7943846 8098141
7 AACG 1562521 1571244
8 AACT 12186297 12417246
9 AAGA 17771087 18024000
...

If the --exact-length flag was set, aligned reads are filtered by read length; only the reads that match
the read length will be used to produce the sequence table are used. The user can optionally filter quality
score of the aligned reads. For paired reads, it is also possible to filter by their distance (furthest edge-to-
edge) and to discard singleton reads. Unaligned reads are discarded.

Tallymer

SeqTable

Tabulate

Scale

Table

Dump

FASTA

BAM

BED BIGWIG

TBL

gtTxt

seqOutBias v1.4.0 User Guide
2023/02/21

scale

seqOutBias scale <seqtbl-file> <bam-file>... [options]

 --qual=<q> Minimum read quality [default: 0].

 --regions=<bedfile> Count only cut-sites inside the regions indicated in the BED
file.

 --bed=<bedfile> Output scaled BED filename (defaults to BAM file basename
with '_scaled.bed' extension).

 --bed-stranded-positive BED written with stranded output have positive counts on
both strands.

 --skip-bed Skip creating the BED file output.

 --bw=<bigwigfile> Output scaled bigWig filename (defaults to BAM file basename
with .bw extension).

 --skip-bw Skip creating the bigWig file output.

 --stranded Output per strand counts when writing scaled values.

 --shift-counts Shift minus strand counts.

 --custom-shift=<plus,minus> Shift strand counts by specified amounts

 (defaults to no shift).

 --no-scale Skip actual scaling in 'scale' command.

 --pdist=<min:max> Distance range for included paired reads.

 --only-paired Only accept aligned reads that have a mapped pair.

 --out-split-pairends Split output files by pair end (_PE1 and _PE2).

 --tail-edge Use tail edge of reads (3') instead of start edge (5').

Tallymer

SeqTable

Tabulate

Scale

Table

Dump

FASTA

BAM

BED BIGWIG

TBL

gtTxt

seqOutBias v1.4.0 User Guide
2023/02/21

This subcommand produces the scaled aligned read pile-ups, both in BED and bigWig form. Listed above
are the options to control the output. Aside from the filtering options that apply to the “tabulate”
computation, there are a few options to tweak the results, namely:

• Scaling can be turned off using the “--no-scale” option;
• Minus strand pile-up position can be shifted to align with the plus strand pile-up (“--shift-counts”

option), making reads from both sides of a cleavage site count to the same position;
• Pile-up positions can be shifted by a custom amount (“----custom-shift=<plus,minus>”);
• Output per strand, using the “--stranded" option will result in one bigWig file per strand, as well

as per strand counts inside the BED file (plus strand with a positive sign, minus strand with a
negative sign);

• Output type selection, using either the “--skip-bed” or the “--skip-bw” option will omit the
production of the BED or bigWig file respectively.

• For PRO-seq and similar protocols, the “--tail-edge” option will use the 3’ end of the read.
• Output file name, using the “--bed" or “--bw" flags;

seqOutBias v1.4.0 User Guide
2023/02/21

seqOutBias API
The code is structured into two parts: a main library (seqoutbiaslib) and the command line program
(seqOutBias) implemented using that library. This split allows the code to be reused to implement
different interfaces with similar functionality or as a component in a larger program. We expose the library
as both a Rust library and a C library.

Using from Rust
The Rust interface is the most extensive, since it includes everything used to build the main program. The
code is split into a series of modules which roughly correspond to the different subcommands of
seqOutBias:

- tallyrun – code to execute genome tools to produce the mappability file
- tallyread – code to read and access the mappability information
- seqtable – code to read and write seqtable files to disk
- fasta – code to read in the FASTA file, combine it with the mappability information, and produce

the seqtable file (via calls to the seqtable module)
- filter – code to filter BAM records based on things like length, quality, etc.
- counts – code to tabulate kmer counts
- scale – code to compute read pile-ups and scale them appropriately
- bigwig – code to write the chromInfo and wiggle files and convert them to a bigWig file via the

wigToBigWig program

To use the library from a new rust program, simply add the following to your Cargo.toml file:

[dependencies]

seqOutBias = { git = "https://github.com/guertinlab/seqOutBias" }

and add the appropriate declarations to your code. For example (see also src/main.rs):

extern crate seqoutbiaslib;

use seqoutbiaslib::tallyrun;

use seqoutbiaslib::seqtable;

use seqoutbiaslib::fasta;

use seqoutbiaslib::counts;

use seqoutbiaslib::scale;

use seqoutbiaslib::file_exists;

Using from C
The C API is more limited, exposing the ability to generate a seqtable file and the ability to create and
query pile-ups in memory (without writing them to disk). The C library (in the form of a .so file in Linux or
a .dylib file on OS X) and the corresponding header file (seqoutbias.h) are built as part of the main
compilation process and can be linked in as usual for regular C libraries.

seqOutBias v1.4.0 User Guide
2023/02/21

Functions can be grouped into four sets:

1) Functions to manage the seqtable generation parameters (the SeqTblParams structure is opaque):

SeqTblParams* seqoutbias_params_with_mask(char const* kmer_mask, uint8_t
plus_offset, uint8_t minus_offset, uint16_t read_length);

SeqTblParams* seqoutbias_params(uint8_t kmer_size, uint8_t plus_offset,
uint8_t minus_offset, uint16_t read_length);

void seqoutbias_free_params(SeqTblParams* ptr);

2) A function to create a default set of pile-up generation parameters (the Config structure is user public):

Config seqoutbias_default_config(void);

3) A function to generate the seqtable file:

int32_t seqoutbias_generate_seqtbl(char const* fasta_filename,
SeqTblParams* params, char const* output_filename);

4) Functions to generate and query the pile-ups (the PileUpData structure is opaque):

PileUpData* seqoutbias_create_pileup(char const* seqtable_filename, char
const* const* bam_filenames, size_t n_bams, Config config);

void seqoutbias_free_pileup(PileUpData* ptr);

PileUpPoint* seqoutbias_chrom_pileup(PileUpData* ptr, char const* chrom,
size_t* out_len);

int32_t seqoutbias_query_pileup_chrom_index(PileUpData* ptr, char const*
chrom, size_t* out_index);

int32_t seqoutbias_query_pileup(PileUpData* ptr, size_t chrom_index,
uint32_t pos, PileUpPoint* out);

Please see the auto-generated include file (target/include/seqoutbiaslib.h) for details.

